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Abstract  

In this work, we offer an improved mask-based noise reduction strategy for improving voice signals. First, the Amplitude Magnitude 

Spectrogram is determined by decomposing the noisy speech signal into its component time-frequency (TF) components. (AMS). The 

signals are then sorted into groups according to their quality ratio to provide a preliminary set of answers. The Cuckoo search technique 

is then used to produce the best mask for each class. The waveform synthesis step next involves windowing the filtered waveforms, 

multiplying them by the best mask value, and summing the products to get the final, improved target signal. Experiments were run on 

many datasets to gauge the suggested method's efficacy, and the results were compared to those of established methods using signal-to-

noise ratio. The acquired findings validated the efficiency of the suggested method in reducing background noise and improving the quality 

of the spoken signal. 
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 Noise cancellation; Speech signal amplification; Extracting AMS features; Cuckoo searching; Creating a waveform; Creating an optimal 
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Introduction  

Over the last several decades, researchers have paid a lot of attention to the issue of speech improvement. (Hu and 

Loizou, 2007). In particular, it is concerned with enhancing the effectiveness of voice communication systems in 

busy, chaotic settings like traffic and crowds. (Hong et al., 2009). There is a plethora of documented speech 

improvement techniques, from spectrum subtraction to subspace to statistical-model based and wiener type. (Hu 

and Loizou, 2007; Kim and Loizou, 2011). By deducting the average of the noise spectrum from the speech 

spectrum, spectral subtraction provides a rough approximation of the clean speech signal. (Boll, 1979). In the 

beginning, when there is no voice signal, the noise spectrum is estimated. (Boll, 1979). Intelligibility and signal-

to-noise ratio (SNR) are common metrics used to evaluate the efficacy of speech augmentation techniques. (Kim 

and Loizou, 2011; Christiansen et al., 2010; Ma et al., 2010). Algorithms for assessing and enhancing intelligibility 

and SNR have been developed by a number of academics and professionals. (Hu and Loizou, 2007; Christiansen 

et al., 2010). Classic methods such as spectral subtraction, Wiener filtering, and maximum likelihood may be 

expressed as a function of this apriorism SNR (Loizou, 2006) to make decisions in voice enhancement and noise 

reduction. (Scalar and Filho, 1996). Although the apriorism SNR calculation might be helpful in real-time 

applications, the local SNR is usually more accurate and should be used instead. (Wolfe and Godsell, 2003). Using 

a weighted average of the  
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prior SNR estimate and the current SNR estimate, Ephraim and Melah implemented the decision driven technique 

for SNR estimation. (Ephraim and Melah, 1984; Chen and Loizou, 2011). The modified decision-directed 

technique to calculating the gain function relies heavily on the posteriori and a priori SNRs. (Ephraim and Melah, 

1984). Maximum a posterior (MAP) estimators Lu and Loizou have a gain function that is equal to the gain 

function utilized in the ideal binary mask for computational auditory scene analysis. (2011). Kim et al. also 

provided very important study.  

Crazy-making search algorithms Look for cuckoos (CS) One of the most recent optimization techniques is based 

on the idea that obligatory brood parasitism of certain cuckoo species deposit their eggs in the nests of other host 

birds who are of different species (Yang, 2009; Valiant et al., 2011). Each cuckoo lays just one egg at a time and 

deposits it in a nest selected at random; this is only one of three idealized principles explored in Cuckoo Search. 

The second rule stipulates that the best nests, those producing the highest quality eggs, will be passed down to 

subsequent generations. The third rule specifies that the number of host nests is fixed, and the egg left by a cuckoo 

has a chance of being detected by the host bird between 0 and 1. The host bird might either discard the egg or 

leave the nest altogether to start a new one. Nests are presumed to be replaced by new nests at a fixed rate. A 

solution's quality or fitness for a maximizing issue may be directly correlated to the magnitude of the objective 

function. The algorithm is based on the Levy flying behaviour of some birds and fruit flies, as well as the 

obligatory brood parasite behaviour of certain species of cuckoos. The method uses Levy flight for updating, 

compares results using fitness functions, and makes appropriate replacements.  

Generation of the best possible masks using cuckoo searches 

 An optimum mask generation module, a waveform synthesis module, and a feature extraction module (Kim et 

al., 2009) make up the strategy used in this research for noise suppression and voice improvement. In order to 

extract features from the speech signal, both the original and the noisy speech signal are input, and then the best 

mask is constructed using cuckoo search. The improved signal is then calculated by windowing the filtered 

waveforms, multiplying them by the appropriate mask value, and summing the results in the waveform synthesis 

module. Fig. 1 shows a block schematic of the suggested method. 

Module for extracting features for this lesson 

The Amplitude Magnitude Spectrogram (AMS) is used to extract characteristics from the input voice corpus (Kim 

et al., 2009). A combination of the clean speech signal and the noisy signal will make up the input speech signal. 

To prepare the input signal for future processing, it is first sampled, quantized, and then pre-emphasized. In Fig. 

2, we see a block diagram of the process through which AMS features are extracted. Band pass filters are then 

used to do a TF (Time-Frequency) decomposition on the processed data. Band-pass filters are designed to only 

let through signals that fall within a certain frequency range, and this module (Kim et al., 2009) does just that by 

dividing the signals into 25 TF units, each of which contributes to a channel denoted by Cowher 1 6 I 6 25. 

 

Figure 1 Block diagram of the proposed technique. 
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frequencies while suppressing undesired ones. Therefore, there will be transmissions within the range of 

frequencies specified for each of the 25 band channels under consideration. Here, the upper and lower frequency 

boundaries of each channel, Ui and Li, are established: Once the channel bands have been formed, the envelope 

of each band may be determined using full wave rectification. This envelope is then decimated by a factor of three 

before being divided into 128 samples of 32 ms with an overlap of 64 samples. (Lu and Loizou, 2011). Let's say 

the i-th channel forms a total of Ni segments, and we'll refer to each of those segments as Sij, where i=6, j=25, 

and Ni=the total number of segments. Henning windowing (Saliva Hanan, 2010) is used to the segmentation's 

sampled signals to filter out noise and bring out the signals' true peaks. Each channel's modulation spectrum, with 

a frequency resolution of 15.6 Hz, is obtained by first zero-padding the windowed signals and then performing a 

256-point Fast Fourier Transform (FFT). (Kim et al., 2009). 

Therefore, FFT is used to acquire the modulation spectrum for all 25 channels, and then the spectra are multiplied 

by 15 triangular-shaped windows that are evenly spaced over the 15.6-400 Hz range for each channel. (Kim et al., 

2009). All of them are added together to form 15 amplitudes in the modulation spectrum, which are the AMS 

feature vectors. (Kim et al., 2009). When compared to more traditional feature extraction methods, AMS produces 

superior outcomes when applied to loud voice signals. This is the result of a concerted effort using the processes 

of segmentation, windowing, FFT, and multiplication by a triangle function. If we denote the time slot by / and 

the sub-band by k, then we may write the feature vector as AFk;/. (Kim et al., 2009). To account for the possibility 

of subtle shifts in the time and frequency domains, we additionally include delta functions into the retrieved 

features. Kim et al. (2009) provides the following time delta functions DAT: 

 

The frequency delta function DAS is as given below: 

 

The overall feature vector Aðk;/Þ including the delta functions can be defined as  

 

Therefore, we have used AMS feature extraction on a massive speech signal corpus to get the features. (Kim et 

al., 2009). 

Discussions on Experimental Findings  

The suggested method for voice improvement and noise reduction runs on a machine with 4 GB RAM, 32 bit 

software, and an i5 processor, and is implemented in MATLAB Version 2012 with COLEA (Kim et al., 2009). 

In Section 4.1, we describe the dataset, and in Section 4.2, we provide the experimental findings. 

 Databank Synopsis  

The experimental database was collected from the Loizou database provided in Kim et al. (2009). The database 

was built to facilitate the evaluation of speech enhancement strategies. Thirty IEEE words were included in the 

noisy database after being corrupted by eight distinct types of real-world disturbances of varying signal-to-noise 

ratios. The sounds were gathered from the AURORA database (Hirsch and Pearce, 2000) and include things like 

traffic, conversations, aviation traffic, and more. Tucker Davis Technologies (TDT) recording equipment was 

used to capture the IEEE sentence database in a soundproof room. Three men and three women each read the 

sentences. The speech was captured at 25 kHz and then down sampled to 8 kHz. 

 Consequences of Experiments  

Figure 6 displays the simulation's output, which consists of plots of the input signal, the noisy signal, and the de-

noised signal. Between 0 and 2.5 kHz, the signal power is shown against its associated frequency. 0 decibels, 5 

decibels, 10 decibels, and 15 decibels of chatter noise, automobile noise, exhibition noise, restaurant noise, street 

noise, and train noise were utilized as maskers. Participants were exposed to 24 different permutations (0 SNR, 5 

SNR, 10 SNR, 15 SNR) over 4 SNR levels and 6 masker types. The acquired findings validated the efficiency of 



Ijaiem.com/Jan 2024/ Volume 13/Issue 1/Article No-1/44-48 

ISSN: 2319-4847 

 
 
 
 
 

Page | 47  
 

the suggested method in reducing background noise and improving the quality of the spoken signal. Figure 8 is a 

graphical illustration of the % improvement in SNR at a 10 dB level for different maskers. 

  Conclusions drawn from a comparison of (tables 1 and Figs. 7 and 8)  

Using the Bayesian Classifier as a benchmark, we compared the suggested method with the usual assessment 

measure of SNR. Various 

 

Noise sources included chatter, trains, automobiles, displays, eateries, and the streets. Noise at 0 dB, 5 dB, 10 dB, 

and 15 dB levels have been studied in all scenarios. The average SNR for both the suggested method and the 

Bayesian approach is shown in Fig. 7. The efficacy of the suggested method is shown by the fact that it achieves 

better outcomes than Bayesian. When comparing the suggested method to the Bayesian method, the best SNR 

value achieved is 31.0977 dB. When compared to the Bayesian method's SNR value of 10.78 dB, the suggested 

methods averaged out to 16.79 dB. Figure 8 displays the % SNR improvement for a 10 dB reduction in noise. 

Better performance for the suggested method was achieved by using an optimum mask. The Segmental signal-to-

noise ratio (SSNR) calculation also requires the mask value; therefore, its significance cannot be overstated. Here, 

the method utilizes subsegments of both the target and masker signals. The system then calculates segment 

energies, followed by SNRs, and finally provides the average segmental SNR. (dB). You may compare the 

Segmented SNR between the suggested method and the Bayesian one in Table 2. The results show that the 

suggested method has improved upon the SSNR values. When compared to the Bayesian method's net average 

SSNR of -5.31, the suggested method's SSNR was around 0.02.  

 Conclusion  

In this work, we provide a cuckoo search-based method for generating optimum masks to reduce background 

noise and improve the quality of a voice signal. The method may be broken down into its three constituent parts: 

feature extraction, optimum mask creation, and waveform synthesis. In order to populate the cuckoo search 

algorithm with initial candidates, feature extraction is performed using AMS, and signals are classified. The 

suggested method was simulated using a number of data sets. The SNR metric allowed for comparison with earlier 

methods as well. The acquired findings validated the efficiency of the suggested method in reducing background 

noise and improving the quality of the spoken signal. The best SNR achieved with the suggested method is 

31.0977 dB, whereas the best SNR achieved with the Bayesian method is 24.67 dB. When compared to the 

Bayesian method's SNR value of 10.78 dB, the suggested methods averaged out to 16.79 dB. The suggested 

method yielded significant improvements in intelligibility with a minimum of training data. Results reveal that 

measuring the signal-to-noise ratio in each time-frequency unit may increase speech intelligibility, as a whole, 

when utilizing the suggested method.  
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